
International Journal of Smart Home 

Vol. 2, No. 1, January, 2008 

 

 

81 

Real-Time Auditing of Domotic Robotic Cleaners 
 

 

D. Papadogkonas, M. Zoumboulakis, J. Taylor, M. Levene and G. Roussos  
Birkbeck College, University of London 

{dikaios, mz, jenson, mark, gr}@dcs.bbk.ac.uk 

Abstract 

Domotic Robotic Cleaners are autonomous devices that are designed to operate almost 

entirely unattended. In this paper we propose a system that aims to evaluate the performance 

of such devices by analysis of their trails. This concept of trails is central to our approach, 

and it encompasses the traditional notion of a path followed by a robot between arbitrary 

numbers of points in a physical space. We enrich trails with context-specific metadata, such 

as proximity to landmarks, frequency of visitation, duration, etc. We then process the trail 

data collected by the robots, we store it an appropriate data structure and derive useful 

statistical information from the raw data. 

The usefulness of the derived information is twofold: it can primarily be used to audit the 

performance of the robotic cleaner –for example, to give an accurate indication of how well a 

space is covered (cleaned). And secondarily information can be analyzed in real-time to 

affect the behavior of specific robots – for example to notify a robot that specific areas have 

not been adequately covered.  

Towards our first goal, we have developed and evaluated a prototype of our system that 

uses a particular commercially available robotic cleaner. Our implementation deploys ad-

hoc wireless local networking capability available through a surrogate device mounted onto 

this commodity robot; the device senses relative proximity to a grid of RFID tags attached to 

the floor. We report on the performance of this system in experiments conducted in a 

laboratory environment, which highlight the advantages and limitations of our approach. 

 

1. Introduction 

Robotic Cleaners are commercially available household devices that are typically equipped 

with an array of sensors, a micro-controller and some kind of programmatic logic. These 

components interact with each other in order to clean a physical space. To achieve covering 

and cleaning a space two broad choices exist: either the robotic cleaner uses its sensors to 

generate a map of the room first and then clean the room according to this map, or use simple 

algorithms such as spiral cleaning, wall-following and random-walk angle-changing after 

bumping into obstacles. The main difference is the time spent cleaning a room. If a physical 

space is mapped first, then cleaning can be near-optimal since the path of the cleaner is 

determined by the map. Conversely, if random paths are taken then more time is required and 

some spots will be inevitably visited more than others. 
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Our approach aims to audit the performance of robotic cleaners by examining the trails 

they select in their cleaning tasks. To achieve this, we overlay a network of wireless 

proximity sensors onto the physical space. While cleaning, the robotic cleaner communicates 

wirelessly with the proximity sensors and generates a sequence of interactions – a trail. In this 

sense, the trail is a metadata-enriched path that a specific robotic cleaner took at some point in 

time. Each proximity node can be thought of as a landmark – so some typical metadata fields 

would be: timestamp, time spent at each landmark, proximity to the landmark, number of 

times a landmark was visited etc. By performing trail analysis we can then evaluate the 

performance of each robotic cleaner and even adapt the algorithm used by the cleaner to the 

specific context e.g. the size and the shape of the room. 

The system proposed achieves trail analysis by using a model for the representation of 

trails in conjunction with suitable data structures for efficient storage, filtering and retrieval. 

In the sections to follow we will describe in detail the different components of the system and 

how they interact in order to assess a trial (and furthermore audit the performance of the 

cleaner). We will then present results from a laboratory experiment and we will critically 

discuss the advantages and limitations of our approach. We conclude by reporting on our 

experiences and future work and by identifying other possible areas that such an approach 

could be useful.  

In summary, this paper makes two main contributions: 

1. It presents a general-purpose machine learning framework for the representation 

and analysis of trail-based records on interactions between pervasive computing 

devices within a smart environment. 

2. It demonstrates how this framework and associated algorithms can be used within 

a practical system for auditing domotic cleaners, with particular emphasis on 

efficient negation querying. 

 

2. Motivation 

The motivating factor for our work stems from the fact that the effects of cleaning a 

physical space are not always visible to the naked eye – at least not without close scrutiny. In 

other words it is often hard to judge objectively the quality of cleaning. This issue becomes 

more relevant in large public spaces such as airports, hospitals, train stations and 

supermarkets.  

Typically the performance of human cleaners is evaluated by supervising staff assessing 

the quality of the cleaning based on some criteria. This assessment process often lacks rigor 

and is open to bias. Our system envisages a not-to-distant future where robotic cleaners will 

replace the menial task of manual cleaning. Some of the commodity robotic cleaners available 

in the market today employ cleaning algorithms that have random elements in their 

programmatic logic. In environments where cleaning is of utmost importance – for instance in 

hospitals – a mechanism must exist to deterministically evaluate the cleaning operation using 

a set of well-defined criteria.  

Furthermore, it is desirable to know, even in domestic environments, how well a space has 

been cleaned. Often a robotic cleaner will be left to operate at a home during a time that 

everybody is out. Our approach can provide a reporting tool assessing how well the robotic 

cleaner performed. Varying levels of detail can be provided such as: hotspots or areas that 
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were visited (cleaned) more than others, areas missed, time spent at each room or area within 

a room, and so forth.  

Finally, looking further into the future of smart homes, it is conceivable that blocks of flats 

will benefit from sharing automated infrastructures in which case it will be constellations 

rather than single domotic cleaning agents that will carry out this task for a collection of 

associated homes. This situation will complicate the auditing task considerably and would 

completely remove any opportunity of human-operated supervision. In this conditions, out 

techniques will be particularly useful and it is only fully automated methods that can provide 

adequate auditing of the performance of such robotic swarms. 

 

3. Augmented Smart Homes 

Robotic cleaners are designed to operate in physical spaces such as house rooms or offices. 

For our context, we envisage augmented physical spaces that essentially encompass the 

installation of numerous sensing components in a home or an office [1], leading to the 

development of advanced smart home facilities. The context of our work is the intersection of 

such pervasive computing, in particular wireless sensor networks, with robotics specifically 

applied for the benefit of smart home maintenance.  

In this context, some of the sensor components would typically assist the user in 

controlling the environment – e.g. ambient temperature sensors that wirelessly interact with 

thermostat-controlled central heating or air-conditioning systems. Other sensors would 

monitor and assist robotic workers in accomplishing their task. For instance we can envisage 

a robotic cleaner that interacts with sensors in order to fully cover a space or to compose a 

near-optimal cleaning roadmap.  

The configuration of the sensing components in the physical space can vary in terms of 

density, capabilities and services offered. Some of the sensors could be capable of detecting 

proximity of a robot, whilst others could be capable of detecting environmental conditions 

such as assessing the air quality of a living room and accordingly adjusting air purifiers or 

other similar devices. Specifically for robotic cleaners a sensing component should be capable 

of detecting the cleaner when it moves into range and logging the visit with a timestamp and 

other relevant information such as proximity information.  

In this manner a simple monolithic sensing component with some limited memory can 

become part of a distributed sensing environment capable of monitoring movements of 

mobile agents and robots. This part of the sensing environment is purely passive and its main 

purpose is the logging of activity. Its product is a set of activity logs and other related 

messages that can be communicated between the robotic cleaner and the sensors. Algorithmic 

components of the system (that can either be part of the robotic cleaner or the smart physical 

space) can take programmatic action based on this information and direct the mobile agent or 

robot accordingly.  

Such co-operation between sensing components and robotic agents can take many forms 

and in this paper we propose a particular approach built on trails as the main data primitive 

and a centralized approach to coordination. In particular, we introduce a universal model for 

the capture of such interactions between sensors and robots and their representation in such a 

way that the complete information is organized in a manner where common patterns can be 

quickly and efficiently identified. Individual robots do not have to process the rapidly 
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growing information collected by the sensing components; instead this information is 

centrally processed by non-constrained computing equipment (such as desktop class PCs or 

mini-servers) and a simple actuating or information message is then sent to the individual 

robot.  

The central processing of trail information is performed continuously and in real-time 

fashion. As new readings become available trails are updated to reflect the new information. 

The data structures used to store and process trail information are optimized for the task in 

hand allowing for high throughput and performance benefits. In the sections to follow we will 

describe in more detail exactly the data structures and the processing methods used to extract 

meaningful information that can be used to primarily audit the performance of the robots and 

secondarily enhance their performance by making decisions based upon these audit reports. 

 

4. Trail-based Auditing and Coordination 

 

As already mentioned, the core ingredient of our approach is the use of trails as the 

principal data processing primitive used for analysis and evaluation of a robotic cleaner. We 

formally define a trail of an individual robotic agent as the sequence of recorded interactions 

between itself and the nodes of a wireless sensor network. Trails contain patterns of actions 

and they can be used for the provision of different services, spatial analysis or navigational 

assistance. A downside of trail analysis is that it requires considerable storage and 

computational resources to discover such patterns. Moreover no single method exists that 

identifies significant trails based on different metrics related to a particular application.  

In this paper we introduce a trail-based analysis approach, an associated model for the 

representation of trails and trail aggregates and suitable data structures for efficient storage, 

filtering and retrieval. 

To identify specific types of interactions we introduce the notion of the landmark as the 

position of a significant object in a mixed pervasive-robotic environment. A sequence of 

interactions recorded in trails represent wireless communications between a robot and the 

sensor node located at a specific landmark which are associated with both spatial and 

semantic attributes induced by the embedding of sensor components in physical space. 

The choice of trails as our representation of a sequence of interactions is not coincidental. 

Indeed, trail records have been used as the basis for coordination between humans for 

centuries in different forms. For example, navigation trails provide route information and 

record information about paths to potential destinations. Aggregating multiple trails acquired 

over time across a particular environment is the technique humans often use to develop 

complete maps of a particular landscape and subsequently assist navigation, especially in the 

context of exploration [2]. Oral trails are also quite common in human coordination and are 

best represented as narratives which are replayed and recast repeatedly to incorporate new 

knowledge [3]. 

Trails have also been used with great success in assisting coordination of information 

seeking activities on the Web [4]. Our work is intimately related to this approach and 

proposes extensions to this model of collective experience aggregation to cater for the distinct 

requirements of environments that mix wireless sensor networks and robotics.  
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Sometimes trails are constructed based on imperfect or ambiguous information, and in 

literature they are often referred to as tracklets (although the term tracklet can refer to other 

related notions too). In this context, a tracklet is often an estimate of a trail and it is based 

only on a few measurements or interactions that are available rather than the full trail or path 

that the agent or robot has followed. One of the uses of tracklets is in mobile target 

recognition [5] and path disambiguation.  

Our work is based on a model that organizes the complete information captured by one or 

more members of a robotic cleaning team into a unified representation. We then propose a 

number of metrics that can be used to identify the most important of these trails that can be of 

value when carrying out a particular task such as cleaning. Such so-called significant trails are 

stored, disseminated and used to provide guidance and assistance in a variety of coordinated 

tasks.  

 

5. High-level description of the coordination engine 

 

In order to construct the coordinator we need to introduce the interaction network that is a 

directed graph where vertices represent sensor network nodes and edges represent paths 

between these nodes. Two vertices (nodes) are said to be connected when there is a 

corresponding interaction record that indicates that the two landmarks have been visited in 

sequence by at least one of the robots. For the remainder of the discussion we will use the 

terms landmarks, nodes and vertices interchangeably. Similarly we will use the terms edges, 

paths, links or trails to represent the connection between landmarks.  

The links between landmarks are always directed and the landmarks are weighted with 

different usage metadata. Example of the metadata fields can include a unique id for the 

robot, a timestamp representing when the robot came into range, a timestamp representing 

when the robot went out of range, a positive integer representing frequency of visitation, the 

distance between the robot and sensor node during their interactive session, the orientation of 

the robot in relation to the sensor node, etc. Higher order metadata can also be used, for 

instance the compound probability that a link will be followed given the robot has arrived to a 

specific node following a particular path of fixed length within the network.  

It should be noted that not all sensor nodes will be capable of providing all this 

information, nor does it make sense to store all the possible metadata fields for all types of 

landmarks. In any case, calculating the weights from the raw system logs requires 

considerable computational effort and poses several challenges in reconciling and ordering 

the log records. A few examples of the challenges involved, stem from the fact that the sensor 

network is likely to be heterogeneous and with only approximate time synchronization. 

Different nodes will have varying capabilities in identifying a specific robot and expectedly 

will be recording different information or use different format to record the same interaction 

information. Similarly, robots may vary in their logging capabilities too. It is the purpose of 

our system to disambiguate the information received from the robots and pre-process it in a 

manner that no conflicting transactions exist. This is somehow semantically related to 

concurrency control protocols and serialisable transaction schedules in distributed database 

environments. 
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To explain this with an example if a robot visits nodes A, B and C in this order, there 

should never be any margin of computational or communication error that would allow this 

sequence of interactions to be recorded in any other order (such as A, C, B) and inadvertedly 

change the structure of the graph. 

In terms of this graph which is central to our approach trails are represented as sequence of 

nodes. For efficiency the graph is stored as a probabilistic suffix tree [6] enhanced with 

metadata needed to encapsulate different information and metrics relevant to each interaction 

[7]. An example of such a representation is shown in Figure 1. The choice of this data 

structure has been guided by our desire to develop a system that can maintain all captured 

information while being able to rapidly respond to a great variety of queries, virtually being 

capable of responding to requests about any number of possible time, space and semantics 

related criteria. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.1 - Suffix tree containing two trails, namely ABCABCD and ABCEABCD.Each letter 

represents a wireless sensor nodes with which at least one robot has interacted with. Each 
node is also associated with additional metadata used to answer and rank significant trail 
queries.  

 

The complete process by which interactions are logged by robot team members and 

aggregated to the data structure is shown in Figure 2. 

A trail represented by a sequence of interactions between nodes is said to be significant if it 

satisfies one or more of the following criteria: 

• It is one of the top n trails in respect of trail popularity. 
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• It is one of the top n trails in respect of average time (or some other temporal 

statistical measure) spent interacting with the sensor nodes (landmarks) in the trail. 

• It is one of the top n trails in respect of the relevance of the landmarks to some 

chosen semantics (for example related to a specific spatial sub-area of the physical 

space that carries some possibly arbitrary user-defined significance). 

• It is one of the top n trails in respect of one of the above criteria for a chosen team 

sub-grouping.  

 

 

 

 

 

 

 

 

 

Fig 2 – Coordination engine architecture. From left to right, a log file is parsed for correctness 

and in order to ensure that there are no violating transactions. Then the parsed interaction 

logs are transformed to our representation – namely the Suffix Tree. The next step is the 

filtering and ranking of the trails. On the far right, the User Interface can be used to submit 

arbitrary queries that will in turn consult the data structure to formulate the results. 

 

In addition, the above criteria can be combined and weighted for example one of the top n 

trails in respect of trail popularity that had a duration that exceeded a given threshold. 

Significant trails are identified within a particular class of trails – for example within the class 

of trails that share a specific landmark as their starting point and another one as their ending 

point (we assume that many possible paths exist between two given landmarks). Sub-classes 

can be formed by refining the selection to extract all the trails that satisfy a relational 

condition for some fixed period of time (find a trail that lasted more than or less than a given 

time value). Other classes can be formed by finding cycles e.g. trails that started and ended at 

the same landmark. 

To extend the context to other applications outside cleaning, classes of trails can be found 

for a mobile agent or robot by selecting trails that occur at a specific time – for example in the 

morning, the afternoon, when the house is empty, or during a period that unusually high 

temperatures are recorded. Significant trails can be inferred from the interaction network 

using a variety of tree traversal methods. We are proposing mechanisms to efficiently 

compute significant trails based on a fine grain heuristic defined on the interaction network, 

extending similar techniques already developed for web navigation. 
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Fig. 3 – High-level depiction of a version of our system. The round objects represent the 

robotic cleaner which is augmented with the surrogate device that reads and logs interactions 
with the RFID sensors (square objects in the figure). Information is transferred wirelessly via 
Bluetooth (although other alternatives may be used e.g. Wi-Fi, Zigbee, etc) to a desktop-class 
PC or a mini server. The PC or mini-server continuously processes and filters the information, 

stores in the probabilistic suffix tree and computes significant trails and other statistical 
information that can then be accessed by any user (e.g. a user at his office can monitor how 

“well” a robotic cleaner is cleaning her home). 

 

6. Experimental Evaluation 

In order to test the feasibility of this proposal we have implemented a simple system to 

collect and analyze robotic trails interacting with simple wireless proximity sensors (Figure 

3). In this case, we only analyzed the aggregate of the collected data and we have not used it 

to modify the behavior of the individual robots in response to significant trails. We have 

observed that this approach is effective and efficient and we believe it can be easily extended 

to other types of wireless sensor networks.    

The sensing component of our prototype (Figure 4) is provided by simple ISO 14443 RFID 

proximity tags. For our robotic platform we have selected the iRobot Roomba cleaner [17] 

primarily due to its cost advantages. As the capabilities of the Roomba are not adequate for 

this experiment we have augmented it with a surrogate device based on our mobile sensor 

node prototype [18] instrumented with an ACG multi-protocol RFID reader [19]. In more 

detail, the different components of the system play the following roles: 
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• Surrogate device. The Shared Memories surrogate device sits on top of the 

Roomba robotic cleaner and interacts with the proximity tags. Each interaction is 

timestamped, recorded and transmitted wirelessly to the coordination server in 

real-time or batch mode in case when the robot is not within range of an access 

point. 

• Proximity Sensing Tags. We use proximity tags in a form of printable adhesive roll 

that can be stuck to or placed on almost any surface. This allows for rapid 

deployment of a system in virtually any environment. 

• Coordinator. The Shared Memories coordinator runs on a server with both wired 

and wireless connectivity. The analysis software also provides a graphical user 

interface to display on the fly significant trails for observation and 

experimentation. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 – iRobot Roomba Robotic Cleaner with Surrogate Device mounted on top of it. Also 

visible in the picture, are the RFID tags attached to the floor, forming a proximity grid. 

 

The experiments were conducted in the first floor of London Knowledge Lab [20]. The 

main obstacles for the Roomba robotic cleaner were the desks, chairs and other office fixtures 

and fittings. Initially, the robot was placed in the center of the room as it is described in the 

user instructions and it was let to run for approximately one hour. We have used the time 

frame of one hour based on the size of the room and the approximate time it takes a human 

operator to clean the room (approximately 20 minutes).  

One of the aims of our experiment was to evaluate the claims made by the iRobot 

corporation that Roomba covers (e.g. cleans) physical spaces almost in their entirety 

(excluding staircases, split-levels, etc). The focus of our investigation is based on the most 

visited landmarks - they can be thought of as hotspots of activity – and their relationship to 

trails followed and the corresponding popularity of each trail (e.g. how often it was followed).  

 

 



International Journal of Smart Home 

Vol. 2, No. 1, January, 2008 

 

 

90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 – Screenshot of the GUI of our system – the office plan where the robotic cleaner 

was deployed is shown together with hotspots of activity (represented by circles). Darker 

circle colors represent landmarks that were visited more often than others.  

Figure 5 depicts the top landmarks – the hotspots of activity – that were visited by the 

robot and Figure 6 shows the overall trail followed. In the overall view of the dataset it is 

fairly easy to spot the flaw of the robotic cleaner: namely the failure to exit the cyclic arc-

shaped enclosure formed by the offices, chairs and other obstacles.  

In addition, we have extracted from the data set the best trails by the popularity of trails 

visited in order to investigate the flaw of the robot’s navigation algorithm. In Figure 7 we 

present the most popular landmarks visited by the robotic cleaner.  

4. Related Work 

 

Robotic cleaners have many potential applications both for domestic and commercial 

environments. Large physical spaces such as supermarkets and airports can benefit from 

automating the cleaning process. Naturally with such growing interest from both industry and 

general public, the research area surrounding robotic cleaners has been very active for some 

time.  
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Fig. 6 – This figure shows the trails followed by the robotic cleaner – represented by the 

arcs and arrows. It is clear that within the time frame given (one hour) many spots within this 

space were not covered at all. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 – This bar chart shows the top five (most popular) landmarks. The X axis shows the 

unique ID number of the RFID tag and the Y axis shows the number of times that each 

landmark was visited. 
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In particular, the marriage between wireless sensor networks and robotics has attracted 

considerable attention [8]. The majority of this work is focused on two main problems: first, 

the introduction of mobility within the sensor network as a means to improve robustness in 

the presence of node failures and the increase of routing performance and coverage; and 

second, the local use of the sensing elements by robots as a means of improvement of the 

information they hold about their immediate environment. To the best of our knowledge there 

are only a few attempts to employ the wireless sensor network as a way of coordinating teams 

of robotic agents by employing its ad-hoc communication capability in addition to its sensing. 

Such an approach is presented by [15] where the authors describe their probabilistic 

navigation model based on the information collected by a pre-deployed sensor network; the 

advantage of this approach is that it can cater for dynamically changing environments (such 

as airports). 

Notably, rather than construct a universal model of the aggregate experience gained by a 

team, the approach by [9] proposes the use of embedded RFID sensor nodes as a means to 

store discoveries made by specific individuals to be employed as pointers by subsequent 

visitors to these sites. This approach has the distinct advantage that a robot team can 

coordinate in an entirely decentralized manner. Nevertheless, it fails to capitalize on ample 

ad-hoc networking opportunities.  

In the more general research area of robotic navigation, there is plenty of work that mainly 

focuses on near-optimal space coverage. Some of the techniques proposed are employing 

complex machine learning algorithms such as the neural network approach proposed by [10-

11] and the fuzzy logic approach proposed by [12]. Other approaches such as [13] support 

dynamic assignment of cleaning polygons in a physical space; such an approach has the 

advantage of resilience; if one robot breaks down, its assigned polygon can be given to 

another robot. Remaining in the research area of coverage, the approach by [14] suggests 

navigation should be based in the pre-construction of a cell-based map where each cell is a 

triangle. In this manner, a specific robot has more flexibility since it can move in more 

directions and avoid obstacles. 
Within our own group, a similarly decentralized coordination algorithm has been proposed 

[16], with a view to provide coordination opportunities in search and rescue operations 

conducted by robot teams. Similar to [9], this technique uses RFID tags embedded in the 

environment to relay information to other team members regarding the history of operation 

within some particular vicinity. 

 

5. Future Work and Conclusions 

We introduce a trail-based approach to auditing the performance of robotic cleaners; our 

system can be extended to monitor other robotic or mobile agents that are designed to operate 

unattended. Central to our approach is the trail Coordination Engine that makes use of ad-hoc 

wireless networking opportunities and the availability of wireless sensor networks embedded 

within the environment of operation. We have outlined the operation of our coordination 

engine which processes the interaction histories of individual team members namely domotic 

robotic cleaners, with the sensor network to construct probabilistic representations of the 

collective experience that can be used to provide the analysis for any query related to the team 

activities.  

Such patterns of past experience can be used to identify areas that require further attention 

or optimize the collective behavior of the team. We are currently working on developing this 
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passive coordination approach into an active coordination mechanism. In particular, we are 

investigating classification algorithms that allow the prediction of individual behaviors and 

thus provide a way to steer the team into areas that require additional attention in a manner 

that is both effective and efficient. From an application perspective, we are particularly 

interested in combining out techniques with delay-tolerant networking approaches to improve 

the robustness and accuracy of our trail collection performance, which is expected to have a 

significant effect on the capability to successfully anticipate coordinator: most significant 

path computed, and per-landmark visitation statistics. 

Our proposed model will have direct applicability to any domestic or commercial robotic 

or otherwise unattended cleaning operation. We envisage that our system will be particularly 

useful to large smart homes and blocks of flats with shared cleaning infrastructures, but its 

usefulness will extend to other smart building environments such as hospitals, airports, and 

supermarkets. The effects of cleaning are not always perceptible through visual inspection 

and it often requires close scrutiny to determine how well a space has been covered. 

Moreover, this process will always be prone to human error and bias. We aim to remove the 

need for human supervision by providing the system described that will automatically audit 

and deterministically report on the quality of a cleaning operation. Finally, our approach can 

be extended to other areas outside cleaning where robots or mobile agents may operate. 
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